Problem 3: Three point charges each of 4 microC are placed at three corners of a square of side 20cm. Find the magnitude of force on each.
Force on Q1:
Force on Q1 due to Q2 (F12)
Force on Q2 due to Q1 (F21)
Force on Q3 due to Q1 (F31)
Solution:
Step: 1 Overview
See the overviews of Problem-1 and Problem-2.Step: 2 Calculation
Since r1, r2 and r3 form right-angeled triangle, so applying Pathagorous theorem to find the value of r3:
r32=r12+r22Given: q1=q2=q3= 4microC = 4 x 10-6C.
r32=(20cm)2+(20cm)2
r32=400cm2+400cm2
r32=800cm2
r3=28.28cm
Force on Q1:
Force on Q1 due to Q2 (F12)
F12=Kq1q2/r12Force on Q1 due to Q3 (F13)
F12=9x109(4x10-6)(4x10-6)/(0.2)2
F12=3.6N.
F13=Kq1q3/r32Resultant Force:
F13=9x109(4x10-6)(4x10-6)/(0.2828)2
F13=1.8N.
According to vector addition, if two vectors having magnitudes a and b are making angle X, then magnitude of resultant vector r can be found by the formula:Force on Q2:
r2=a2+b2+abcosX.
So similarly,
F2=F122+F132+2F12F13cos45o.
F2=(3.6)2+(1.8)2+2(3.6)(1.8)(0.707)
F2=25.364
F=5.04N. (Ans)
Force on Q2 due to Q1 (F21)
F21=F12=3.6NForce on Q2 due to Q3 (F23)
F23=Kq2q3/r22Resultant Force:
F23=9x109(4x10-6)(4x10-6)/(0.2)2
F23=3.6N.
F2=F212+F232+2F21F23cos90o.Force on Q3:
F2=(3.6)2+(3.6)2+2(3.6)(3.6)(0)
F2=25.92
F=5.09N. (Ans)
Force on Q3 due to Q1 (F31)
F31=F13=1.8NForce on Q3 due to Q2 (F32)
F32=F23=3.6NResultant Force:
F2=F312+F322+2F31F32cos45o.
F2=(1.8)2+(3.6)2+2(1.8)(3.6)(0.707)
F2=25.364
F=5.04N. (Ans)